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Abstract- Spasticity is a velocity-dependent phenomenon;  the 
quicker the limb is moved the more resistance is encountered. A 
compact, portable instrument was constructed for recording the 
angle at the knee, the rate of change of angle (angular velocity) 
and the force encountered at the ankle when the limb was flexed. 
A pilot study was performed on 5 normal volunteers and 5 pa-
tients with spasticity.  A preliminary index of spasticity was ex-
tracted from the measurements, being 0.163±0.059 N.s/deg 
(mean±SD) for the patients and 0.052±0.030 N.s/deg for the nor-
mal group. 
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I. INTRODUCTION 

 
A number of common conditions affecting the central nerv-

ous system including stroke, head injury and Parkinson's dis-
ease are complicated by abnormalities of tone in the limbs. 
Tone is defined as the resistance encountered when passively 
moving the limbs and the two main types of increased tone are 
spasticity and rigidity.  Spasticity is a velocity-dependent phe-
nomenon; the quicker the limb is moved the more resistance is 
encountered [1]. It is also non-uniform in that the resistance 
encountered is not the same throughout the whole range of 
movement. This contrasts with rigidity which is non-velocity-
dependent and uniform. These clinical characteristics allow the 
phenomena of spasticity and rigidity to be detected at the bed-
side and their presence or absence provide useful diagnostic 
clues. 

Whilst the characteristics of spasticity are invaluable diag-
nostically, their quantification using objective measures on a 
ratio scale does not form part of routine clinical practice and 
large trials of anti-spasticity drugs have relied on insensitive 
ordered categorical scales such as the Ashworth scale [2,3]. A 
portable and user-friendly device which could detect and quan-
tify abnormalities of tone would be an invaluable adjunct to the 
clinical assessment and would allow a more comprehensive 
assessment of the effects of different interventions including 
physiotherapy, hydrotherapy and medication. To ensure that the 
relevant data were collected a device was designed with three 
prerequisites in mind, namely the need to record the angle at the 
knee, the rate of change of the angle at the knee (angular veloc-
ity) and the force applied at the ankle. 
 

II. METHODOLOGY 

A. Instrument 
 

The instrument† developed was a goniometer with angle and 
force transducers (fig 1). Angle was measured by a potentiome-

ter in the hinge positioned at the knee. Force was measured by a 
force transducer in the handle, positioned at the ankle, with 
which the examiner flexed the knee. The instrument incorpo-
rated adjustable features to accommodate different sizes of leg 
and degrees of varus and valgus deviation. The potentiometer 
and force transducer were powered from stabilized voltage sup-
plies and the analog signals were measured with a data acquisi-
tion card (DAQCard-AI-16XE-50, National Instruments) in a 
laptop computer. Data acquisition and processing was per-
formed with Matlab v5.3. Angle and force were sampled at 500 
Hz. Angular velocity was computed by differentiating the an-
gle-time record and smoothing with a 5-point running-average 
filter. 
 

 
 
 

Fig. 1. The gonimeter attached to the knee. 
 

B. Clinical measurements 
 

Five patients with a stable neurological condition compli-
cated by spasticity of the lower limbs and five normal subjects 
from hospital staff were recruited for examination (Table I). 
After explaining the experiment to the subjects, all gave written 
consent. 

With the subject supine on the bed with the head and trunk 
elevated to about 20 degrees the device was applied to the lat-
eral aspect of the right leg. The instrument was positioned at the 
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1. Thigh support
2. Velcro strapping
3. Slide rod holder
4. Thigh slide rod
5. Slide rod clamping knob
6. Knee pivot locator
7. Rotating support
8. Potentiometer
9. Swivel joint
10. Self adjusting shin rod.
11. Ankle support
12. Force transducer
13. Push/Pull handle
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lateral aspect of the knee joint and adjusted appropriately. The 
lower end of the device was secured just above the lateral and 
medial malleolus. Having checked that the patient was com-
fortable, a few trial runs were performed. If no discomfort was 
reported the measurements proceeded.  

In the experiment the examiner attempted to reproduce the 
normal examination of tone but with the device applied to the 
leg. This involved the examiner lifting the whole leg with the 
left hand under the knee and the right hand holding onto the 
handle anterior to the lower tibia. In the normal way the hip and 
knee were flexed and extended avoiding, if possible, contact of 
the heel with the bed covers. The examiner flexed the leg at 
three different speeds over a 10-20 s period during which data 
was acquired. Throughout the experiment the subject was in-
vited to volunteer any discomfort or symptoms that arose.  

 
 
 

 
Fig. 2. Traces of angle, angular velocity and force displayed against time for 

Subject 2. 

III. RESULTS 
A. Raw data 
 

Fig 2 shows recorded traces of angle, angular velocity and 
force against time for one of the patients (Subject 2). The traces 
show the three leg manipulations, each starting at approxi-
mately 20 degrees of flexion and flexing to 110 degrees or 
more. The velocity trace shows the progressive increase in peak 
velocity effected. Positive velocity represents increasing flexion 
and negative velocity represents increasing extension of the leg. 
It can be seen that the peak applied force also increased. Posi-
tive force indicates that the examiner was pushing so as to flex 
the knee and negative force indicates where the examiner was 
not pushing but supporting the weight of the lower leg. The 
state of relaxation of the subject was an important factor in ob-
taining good quality data. 
 
B. Force-angle-velocity plot 
 

The significance of these measurements can more easily be 
visualized by combining angle, angular velocity and force on 
the same plot. Fig 3 shows the velocity measurements from 
Subject 2 plotted against angle. The color of the trace is modu-
lated to indicate force. Each flexion and extension (bending and 
straightening)   forms  a  loop  on  the  plot.   The   first   flexion  

 

 
Fig. 3. Force-angle-velocity plot for Subject 2 (patient). The color scale repre-

sents applied force in Newtons. 

 

 
Fig. 4. Force-angle-velocity plot for Subject 10 (normal subject).  
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reached a peak velocity of about 30 deg/s and the force reached 
20 N until the maximum flexion of 108 degrees was attained; at 
this point the force rose slightly as the examiner pushed against 
the limit of bending of the knee joint. The next flexion reached 
a higher velocity, approximately 220 deg/s but now, at an angle 
of about 43 degrees, the velocity fell rapidly and the force rose 
to 30 N caused by an increase in the resistance to passive 
movement of the limb. There was then a recovery of the veloc-
ity until again the maximum flexion of 110 degrees was 
reached. The third flexion, at a still higher velocity, reached 
400 deg/s. Now the drop in velocity and increase in muscle 
resistance were even more marked, with the force reaching 80 
N. The maximum flexion was higher, about 118 degrees, as the 
examiner continued to apply a large force. These results clearly 
show the velocity-dependent nature of the  resistance to passive 
movement encountered in spasticity, and its non-uniformity 
with angle of flexion. 

Fig 4 shows a force-angle-velocity plot for one of the normal 
subjects. Here there was no sudden drop in velocity in mid flex-
ion and, ignoring angles near the limit of flexion of the leg 
(>100 deg), the maximum force attained was only about 25 N 
even for a peak velocity of almost 500 deg/s. The maximum 
force now occurred during the acceleration phase of the leg, 
between angles of 40 to 70 degrees, whereas in the patient (fig 
3) the maximum force occurred during a deceleration.  

 
 

 
Fig. 5.  Maximum applied force following the main peak in angular velocity 
plotted against peak angular velocity for Subjects 2 (patient) and 10 (normal 

subject).  Points in each set are joined by lines.  

 

C. Index of spasticity 
 

These observations suggest a way of quantifying spasticity 
from this data. The maximum force attained following the main 
peak in angular velocity was plotted against the value of the 
peak velocity. This meant that only the deceleration phase was 
included. Fig 5 shows the values for the same patient and the 
normal subject as above. Three sets of three leg flexions at 
varying speeds were included in each case. The extension 
phases of the manipulation of the leg (i.e. the negative-velocity 
portions of the curves in figs 3 and 4) were not included in the 
analysis. 

For the patient, a general increase in peak force with peak 
angular velocity is seen from Fig 5, whereas for the normal 
subject the changes were much smaller. A linear least-squares 
fit was carried out for all 9 points in each plot and the gradient 
of the fitted line for all the subjects is given in Table I. The 
mean gradient (±SD) was 0.163±0.059 N.s/deg for the patients 
and 0.052±0.030 N.s/deg for the normal group. An unpaired t-
test showed that this difference was highly significant (P<0.01). 

 
TABLE I 

 
 

Subject Sex Age Diagnosis Gradient  
(N.s/deg) 

1 F 36 Multiple sclerosis 0.058 
2 M 41 Multiple sclerosis 0.207 
3 M 28 Multiple sclerosis 0.227 
4 M 47 Hereditary spastic paraparesis 0.151 
5 M 44 Multiple sclerosis 

 
0.173 

6 M 47 Normal subject 0.004 
7 M 48 Normal subject 0.076 
8 M 18 Normal subject 0.042 
9 M 39 Normal subject 0.091 

10 M 49 Normal subject 0.047 
     

 
IV. DISCUSSION 

 
The gradient of the linear fit to the peak force/peak angular 

velocity data was generally much higher in the patients than in 
the normal subjects, reflecting the fact that the muscle resis-
tance was velocity-dependent in spasticity. One of the patients 
(Subject 1), although exhibiting clear spasticity clinically, gave 
a value of gradient within the normal range. This was the only 
female subject studied so far and the lower value obtained 
could be reflecting sex and muscle strength differences. These 
factors should now be investigated as part of a larger study. 
Nevertheless, the calculation of gradient in this way could form 
the basis for an index of spasticity from the data obtainable 
with this instrument.  

In all patients the increase in muscle resistance at a certain 
angle of flexion was followed by a "give" in the muscle with a 
sudden increase in angular velocity at a reduced applied force. 
This is evident in example shown in fig 3 at angles of 52 and 68 
degrees for the medium- and high-velocity traces respectively.   
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Fig. 6  Force-time trace for Subject 2 on the fourth set of manipulations, show-

ing clonus. 

 
One of the patients (Subject 2) showed an overall increased 

stiffening of the leg as the tests progressed, exhibiting clonus 
which was clearly seen in the force-time trace as a 10 Hz oscil-
lation (Fig 6). At this stage the examiner could no longer com-
plete the flexing tests on the leg. In contrast, other patients re-
ported an improvement in the leg as the tests progressed and the 
maximum muscle resistance encountered was seen to decrease.  

All these factors could be extracted from the data obtained 
and are potentially useful measures of muscle tone. 

 
V. CONCLUSION 

 
A compact, portable instrument, for use at the bedside, has 

been developed for quantifying muscle tone in the leg from 
measurements of angle of flexion, angular velocity and applied 
force. A preliminary index of spasticity was extracted from the 
measurements but potentially a number of alternative indices 
could be used and may allow changes in spasticity to be moni-
tored more accurately. With a suitable adaptation of the instru-
ment, the technique could also be applied to the arm. 
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